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Abstract

The motion of a roulette ball on the rim of a tilted roulette wheel is studied. A
mathematical model for the differential equation of motion and exit condition is derived,
together with a solution procedure for obtaining values for the time and location when
the ball leaves its circular track and begins its spiralling decent into the rotor. Special
attention is given to real-time implementation possibilities.
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1 Introduction

According to Edward O. Thorp, the key problem in trying to physically predict the outcome
of a game of roulette is to ”determine when and where on the stator the ball will leave the
track , because then everything else except rotor velocity is a constant” (cf [1]). On tilted
wheels, ”the ball will not fall from a sector of the track on the high side; the effect is strong
with a tilt of just 0.2◦, which creates a forbidden zone of a quarter to a third of the wheel;
the non-linear differential equation governing the balls motion on the track is the equation
for a pendulum which at first swings completely around its pivot but is gradually slowed by
air resistance” (cf [2]).

2 The Physical Model

2.1 Differential Equations of Motion

Applying Newtonian mechanics to the above leads to the following differential equations of
motion in the time domain:

θ̇ = Ω, Ω̇ = −αΩ2 + β − γ sin θ (1)

with initial conditions at time t = 0: θ(0) = 0; Ω(0) = Ω0,

t[seconds] time
θ[radians] angular distance
Ω[rad/s] angular velocity

and the dot denotes differentiation with respect to time (d/dt).
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symbol value SI units meaning
R 0.242 [m] ball track radius of roulette wheel
S πr2 [m2] cross-section area of roulette ball
r 0.00874 [m] radius of roulette ball
m 0.00374 [Kg] mass of roulette ball
Cw 0.46-2.0 [1] aerodynamic drag coefficient
ρ 1.2 [Kg/m3] density of air
g 9.807 [m/s2] gravitational acceleration
µ0 0.001 [1] coefficient of rolling friction
µ1 0.014 [1] coefficient of rolling/sliding friction
δ 0.2574 [rad] inclination angle of stator towards rotor

sin δ 0.2546
cos δ 0.9670 stator inclination ∠δ=14.75◦

tan δ 0.2633
ε 0.0035 [rad] tilt ∠ε=0.2◦

(sin ε ≈ ε)

Table 1: Values for physical and geometric constants

Here we have assumed that the roulette wheel is tilted at some dip angle ε to the horizontal
and θ is the angle, at time t, of the ball as measured from the center of the wheel to the ball,
referenced from the radius which makes the lowest drop from the horizon.
The parameters α, β and γ are given by:

α =
5
7

S

2m
CwρR + (µ1 cos δ + µ0 sin δ) (2)

β =
5
7

g

R
[µ1 sin δ − µ0 cos δ] (3)

γ =
5
7

g

R
sin ε (4)

For our 60cm diameter roulette wheel the numerical values for the physical and geometric
constants are given in Table 1, leading to a typical equation for the angular velocity of the
ball:

Ω̇ = −0.0225Ω2 + 0.075− 0.1 sin θ (5)

Equation (5) shows the magnitude of the forces involved. At higher velocities (e.g. 2rps
corresponding to Ω2 ≈160) the first damping term dominates. At lower velocities (e.g. 0.5rps
corresponding to Ω2 ≈10) the contributions of the other terms become significant.
Several remarks related to the physical model are in order ...

2.2 Air Resistance

The resistance of the air acts on the roulette ball causing its velocity to decrease over time.
The law in force on the ball is determined by the Reynolds number, defined as

Re =
ρυ`

η
,
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where ρ and η are the density and viscosity of air, υ is a characteristic velocity and ` is a
characteristic length. The drag force is usually expressed in the form

F =
S
2
Cwρυ2,

where the drag coefficient Cw is a dimensionless number which is a function of the Reynolds
number. For values of Re of the order of 1 or less, the force is proportional to the velocity
and Cw is proportional to 1/Re (viscous damping). For values of Re of the order 1,000 to
100,000 the force is proportional to the square of the velocity and Cw is a constant (Newtonian
damping). We have approximately ρ=1.2[Kg/m3] and η=1.853·10−5[Pa·s]. The diameter of
the ball ` is ≈0.02[m] and the characteristic velocity is υ=1.52[m/s] (=1[rps]=2π[rad/s]). The
maximum Reynolds number based on the diameter of the ball is 1946 so that the quadratic
force law and Newtonian damping should apply.
The aerodynamic drag coefficient for a sphere falling through the air is approximately 0.46.
Because of the geometry of the ball rolling on a circular track inside the roulette wheel we
expect the actual aerodynamic drag coefficient to be higher than 0.46, maybe up to 2.0,
approaching the aerodynamic drag coefficient of a hollow semi-cylinder facing stream.
However, air resistance alone cannot account for the velocity decay of the ball. If we assume
for the moment that we have no rolling friction (µ0, µ1=0), then the deceleration parameter
α=(5/7)(S/2m)CwρR for the ball would be in the range between 0.0035 (for Cw ≈0.5, i.e.
laminar air flow) and 0.0135 (for Cw ≈2, i.e. turbulent air flow due to roulette wheel geom-
etry). But we know from observation of our typical wheel/ball configuration that the ball
velocity decays from approximately 0.83 revolutions per second (rps) to 0.45 rps in about 10
seconds and this would require the parameter α to be in the range between 0.018 and 0.02.
Consequently we need to consider the effects due to ...

2.3 Surface Friction

In a private communication Edward Thorp pointed out the following observations concerning
the complex orbital motion of the spinning roulette ball:

”I believe that when we [Claude Shannon and I] did tests with our standard
casino wheel we noted that there were certain orbital complexities arising from
the interchange of energy between orbital angular momentum and spin angular
momentum, as well as frictional effects such as the change of mode from sliding
friction when the ball is initially launched to a kind of rolling friction thereafter.
There is also the behaviour of the axis of rotation of the ball: If the ball rolls on
the track, the axis of rotation precesses around a vertical direction and so there
must be some frictional ’slippage’, perhaps ’noisy’ to accommodate this. Whether
any of these things are significant enough to be accounted for, I do not know, but
I suspect they matter at higher velocities, say more than 5-6 revolutions before
the ball leaves the track.”

That said, it is clear that the motion of the roulette ball on the rim of the wheel is divided
into two phases: the first phase in which the ball slides/rolls and during which (with the
help of sticky friction) slipping and abnormal spin angular momentum is converted to orbital
energy; and then the second phase where slipping has ceased and the ball is performing a
more or less regular rolling motion and where the points of contact between the ball and the
rim of the wheel trace out a 3-dimensional roulette curve.



4 Roulette Physics

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 

7/5mRΩ2 

δ 

mg 

N1 

N0 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

● 

Contact Point  
On Ball Track 

δ 

Contact Circle 
On Wheel Rim 

 
 
 
 
 
 

Figure 1: Roulette Wheel side-view showing normal forces and contact circles

Our physical model described by equations (1) is only valid after the ball has connected to
the roulette and before it disconnects from the roulette and leaves the track.
The force resulting from rolling friction is usually modelled as

F = µN,

where µ is the coefficient of rolling friction and N is the force acting in the normal direction.
Consequently, we have included in our physical model two friction force terms according to
the two normal forces on the ball:

F1 = µ1N1 = µ1m[
7
5
RΩ2 cos δ − g(sin δ cos ε− cos δ sin ε cos θ)]

F0 = µ0N0 = µ0m[
7
5
RΩ2 sin δ + g(cos δ cos ε− sin δ sin ε cos θ)]

The first term corresponds to the friction force when the ball is pressing against the rim
perpendicular to the circular ball track and the second term corresponds to the friction force
of the ball rolling on its inclined track. The coefficient µ1 is an order of magnitude larger
than µ0 because of the arc of contact between the rim and ball which forces the ball onto its
circular track causing micro-slippage. The small value of µ0 (relative to µ1) reflects the fact
that there is only a small ’drilling’ friction between the track and the ball.
For small ε we can set cos ε = 1 and ignore the terms with coefficients µ1 · sin ε and µ0 · sin ε.
After rearranging, we get for the friction contributions:

[µ0 sin δ + µ1 cos δ]75mRΩ2 (friction component proportional to centrifugal force)
[µ0 cos δ − µ1 sin δ]mg (friction component proportional to gravitational force)

As µ0 is an order of magnitude smaller than µ1, the friction component corresponding to the
gravitational force has negative(!) sign; hence the positive(!) sign of β in equation (1).



J.-I. Eichberger 5

The factor of 5/7 is included in the model to account for the inertia due to the rotational
motion of the roulette ball which is rolling without slipping.

2.4 Summary of the Physical Model

We are pleased to find that, notwithstanding the complex dynamics of the system and the
different nature of the forces involved, all the contributing terms can be condensed into the
compact model equations given in (1).
Of course, we do not need to and cannot know all of the physical parameters mentioned above
precisely. Estimates of them are however helpful in determining and checking the validity
of the value ranges of the aggregate model parameters α, β, and γ (which in turn must be
calculated precisely!).
We will show that the physical model describes quite accurately what is actually happening
(if the parameters α, β, and γ are correctly identified from experimental data) and that
equations (1) are useful for making predictions.

3 The Case without Tilt

We will first study the solution of the simplified model where we assume that the wheel is
perfectly level (γ=0). In this case, equations (1) reduce to:

θ̇ = Ω, Ω̇ = −αΩ2 + β; α, β > 0 (6)

By setting a = α and b2=β/α, the second equation in (6) becomes

Ω̇ = −a(Ω2 − b2) (7)

which is directly integrated to give:

Ω(t) = −b coth(c0 − ab · t) (8)

The initial condition Ω(0)=Ω0 defines the integration constant c0 to:

c0 = −arcoth(
Ω0

b
) (9)

For Ω0 > b we have c0 < 0 and Ω(t) > b > 0 for all t > 0.
A further integration gives:

θ(t) =
1
a

ln
[
sinh(c0 − ab · t)

sinh c0

]
(10)

with θ(0)=0.

The above equation can be solved for t:

t(θ) =
1
ab

[
c0 − arsinh(sinh c0 · eaθ)

]
(11)

with t(0) = 0.
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By inserting (11) into (8), using identities of the hyperbolic transcendental functions and
carefully observing ± signs, we obtain Ω as a function of θ:

Ω(θ) =
√

c1e−2aθ + b2 (12)

with the constant c1 defined by

c1 = Ω2
0 − b2 = b2(coth2 c0 − 1) (13)

with Ω0 = Ω(θ = 0).

If we know the time T0 for one revolution, we can determine c0 and c1:

x =
Ω0

b
=

ea·2π − cosh(ab · T0)
sinh(ab · T0)

(14)

c0 = −arcoth(x) (15)
c1 = b2(x2 − 1) (16)

The ball will come off its circular track and begin its spiralling decent into the rotor when
the pull of gravity overcomes the centrifugal acceleration:

Ω2
f =

5
7

g

R
tan δ ≈ 7.62[rad2/s2] (17)

Equating Ω2(θ) with Ω2
f gives the fall position θf :

θf =
1
2a

ln

[
c1

Ω2
f − b2

]
(18)

We then obtain the fall time tf by evaluating (11) at θf :

tf = t(θf ) (19)

On a perfectly level wheel there is no ’forbidden zone’ where the ball cannot exit and for
different initial conditions Ω0 all exit angles θf ∈ [0, k · 2π] are possible.

4 The Case with Tilt

4.1 Phase-Plane Solution

For γ > 0 there exists no closed-form solution of (1) in the time domain.
However, in the phase-plane the trajectories θ(t),Ω(t) satisfy the equation

(
dΩ
dt

)/(
dθ

dt
) =

dΩ
dθ

=
−αΩ2 + β − γ sin θ

Ω
(20)
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So, the ’curve’ Ω(θ) corresponding to the differential equations of motion (1) is defined by
the differential equation

(Ω2)′ = −2αΩ2 + 2β − 2γ sin θ (21)

where the dash (′) denotes differentiation with respect to angular distance (d/dθ).

Substituting Γ(θ) = Ω2(θ) gives

Γ′ = −2αΓ + 2β − 2γ sin θ (22)

It is somewhat surprising that a closed-form solution for the linear, first-order differential
equation (22) exists. Here it is:

Γ(θ) = c1e
−2αθ +

β

α
+

2γ

4α2 + 1
(cos θ − 2α sin θ) (23)

Thus, on tilted wheels the angular velocity Ω as a function of angular distance θ is given by:

Ω(θ) =
√

c1e−2aθ + b2 + η(cos θ − 2a sin θ) (24)

with a = α, b2 = β/α, η = 2γ/(4a2 + 1) and the constant c1 defined by the initial condition
Ω(0) = Ω0:

c1 = Ω2
0 − b2 − η (25)

The inclusion of η in the above equation is a consequence of our chosen coordinate system,
with θ = 0 at the low point of the wheel.
In practice it is not always feasible to fix the initial conditions to θ(0) = 0 at time t = 0. If
we have instead θ(t = 0) = ϕ and Ω(ϕ) = Ω0, the integration constant c1 becomes:

c1 =
[
Ω2

0 − b2 − η(cos ϕ− 2a sin ϕ)
]
e2aϕ (26)

When c1 is known, the solution curve Ω(θ) is completely defined through (24).

4.2 Exit Condition

The exit condition on a tilted wheel is obtained by observing that the ball will leave the track
when the pull of gravity overcomes the centrifugal acceleration:

Ω2
f =

5
7

g

R
[tan δ cos ε− sin ε cos θf ] (27)

or, taking typical values1:

Ω2
f = 7.62− 0.1 cos θf (28)

1A derivation of formula (27) for the exit condition including tilt is given in section 6
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Figure 2: The Fall Position, θf , is the first point of intersection between the two curves

4.3 Exit Location

The exit location, θf , can then be calulated by equating Ω2(θ) = Ω2
f :

c1e
−2aθ + η

[
(1 +

1
2
(4a2 + 1)) cos θ − 2a sin θ

]
+ b2 − 5

7
g

R
tan δ cos ε = 0 (29)

or, for typical values:

c1e
−0.045θ + η [1.501 cos θ − 0.045 sin θ] + 3.33− 7.62 = 0 (30)

or (with η = 0.2 corresponding to ε = 0.2◦):

c1e
−0.045θ + 0.3 cos θ − 0.009 sin θ + 4.29 = 0 (31)

In equation (30) the actual dependence of the solution on η and thus ε is retained. We
must solve for the smallest positive root to obtain the fall position, θf . Beyond θf , the ball
”disconnects” from the solution curve (24) and begins its spiralling path into the rotor.

4.3.1 Graphical Solution

Figure 2 shows the graphical solution for equation (31). The dotted line corresponds to the
function g1(θ) = c1e

−0.045θ − 4.29 and the solid line corresponds to the function g2(θ) =
−η [1.501 cos θ − 0.045 sin θ], with the abscissa of the first point of intersection of the two
curves defining the desired root θf .
As can be seen, the tilt angle ε = 0.2◦ is sufficiently large to ”shade” an angular region where
a solution of (31) is not possible thus creating ”a forbidden zone” on the wheel where the ball
cannot exit. The forbidden zone is approximately located between the angles π and 3π/2 ,
which corresponds to a section on the high side of the wheel.
The existence of a forbidden zone of a quarter to a third of the wheel for a tilt angle of 0.2◦

causes the fall positions of the ball to differ greatly from those of a wheel without tilt.
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4.3.2 Numerical Solution

As can also be seen on the above graph is that there may be multiple intersection points of
g1(θ) and g2(θ) corresponding to multiple roots of the transcendental, non-linear equation
g(θ) = 0.
For a robust numerical root-finding procedure we first need to make a good initial guess as
to where the smallest positive root is located, i.e. we need to ”trap” the root between two
bracketing values, and then hunt it down like a rabbit. It is illuminating to make sketches
showing the geometric distribution of roots of g(θ) corresponding to different initial conditions
and different parameter settings. This also gives clues as how to organize the hunt for the
desired root.
Because the derivative of g(θ) is easy to calculate, Newton’s Method (which generates succes-
sive iterates by approximating the curve g(θ) by its tangent line) is the method of choice. The
procedure converges very rapidly to the solution provided the initial guess is a good one. An
efficient algorithm for finding the bracketed root of a differentiable function is described in
(cf [3]). The described routine rtsafe uses a combination of Newton’s Method and bisection
to ”home in” on the solution between the two bracketing values.
For an initial value Ω0 = 4.5 (7.5), corresponding to ≈0.7 (1.2) rev/sec, the ”distance-to-
fall”, θf , is 31.75 (57.10) radians, or 5.05 (9.09) revolutions. A solution accurate to five digits
was obtained by the routine rtsafe in five iterations, confirming that the method is quite
adequate for calculations in real-time.

4.4 Time-of-Fall

After having determined the angular distance θf that the ball travels after the initial mea-
surement of Ω0 at θ = 0 , the time-of-fall tf can be calculated from equation (24) using the
relationship dθ

dt = Ω or dt = 1
Ωdθ. The resulting integral

tf =
∫ θf

0

dθ√
c1e−2aθ + b2 + η(cos θ − 2a sin θ)

(32)

which needs to be evaluated on the interval [0, θf ] to obtain tf , is one of the ugliest one can
possibly come across.
Brute force numerical integration by subroutine SIMP of (cf [4]) using our typical parameter
values gives tf = 9.37 (13.79) seconds (for a fall position of θf = 31.75 (57.10) radians).

A more subtle approach, suitable for real-time calculations, is to split the value θf into:

θf = k · 2π + ∆θf , k an integer, (33)

and evaluate the integral (32) on the two sub-intervals [0, k · 2π] and [k · 2π, θf ] to get

tf = t(k · 2π) + ∆tf (34)

Looking at the first sub-interval [0, k · 2π], it can be shown that for ’complete revolutions’
(32) reduces to the formula

t(k · 2π) =
1
ab

[
c0 − arsinh(sinh c0 · ea·k·2π)

]
(35)
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with c0 = −arsinh( b√
c1

)2

Proof:
It suffices to integrate (32) on the intervall [0, 2π] to show the point. From (24) we get

Ω2(θ)− (c1e
−2aθ + b2) = η(cos θ − 2a sin θ)

Integrating both sides from 0 to 2π gives∫ 2π

0

[
Ω2(θ)− (c1e

−2aθ + b2)
]
dθ = 0

or ∫ 2π

0

[
(Ω(θ) +

√
c1e−2aθ + b2) · (Ω(θ)−

√
c1e−2aθ + b2)

]
dθ = 0

and thus, because Ω(θ) and
√

c1e−2aθ + b2 are positive functions for θ > 0:∫ 2π

0

[
Ω(θ)−

√
c1e−2aθ + b2

]
dθ = 0

and consequently, since
√

c1e−2aθ + b2 is monotonically decreasing for θ > 0:∫ 2π

0

dθ

Ω(θ)
=

∫ 2π

0

dθ√
c1e−2aθ + b2

So we have:

t(2π) =
1
ab

[
c0 − arsinh(sinh c0 · ea·2π)

]
If we know the time T0 for one revolution, we can determine c0 and c1:

x =
ea·2π − cosh(ab · T0)

sinh(ab · T0)

c0 = −arcoth(x)
c1 = b2(x2 − 1)

Thus, for complete revolutions, the elapsed time t(k · 2π) is the same for a tilted roulette
wheel and one without tilt (with c1 = Ω2

0− b2−η). This is in agreement with the observation
that on a tilted roulette wheel the ball alternately gains momentum or loses momentum as
it passes the high point or the low point of the wheel, respectively. And these two effects
cancel for each complete revolution.

No short-cut exists, however, for integrating (32) on the second sub-interval [k · 2π, θf ]. For
small tilt angles ε, i.e. small values of η we suggest the following approach to calculate ∆tf .

2arsinh(x) = ln(x +
√

x2 + 1)
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A Taylor-expansion of the integrand f(θ; η) gives:

f(θ; η) = f(θ; 0) + η · ∂f(θ; 0)
∂η

+
η2

2
· ∂2f(θ; ζ)

∂η2
; ζ ∈ [0, η]

leading to the following representation for ∆tf :

∆tf =
∫ θf

k·2π

[
1√

c1e−2aθ + b2
− η

2
(cos θ − 2a sin θ)√

(c1e−2aθ + b2)3
+

η2

2

3
4(cos θ − 2a sin θ)2√

(c1e−2aθ + b2 + ζ(cos θ − 2a sin θ))5

]
dθ

The integral corresponding to the first term can be folded into equation (35). For the integral
corresponding to the last term we get:

η2

2
3
4

∫ θf

k·2π

[
(cos θ − 2a sin θ)2√

(c1e−2aθ + b2 + ζ(cos θ − 2a sin θ))5

]
dθ ≤ η2

2
3
4
2π ·max

(1 + 2a)2√
(c1e−2aθ + b2 − η)5

≤ η2

2
3
4
2π · (1 + 2a)2√

(Ω̄2
f − η)5

≈ η2

2
3
4
2π

1.092√
75

≈ 0.02η2 ≈ 0.0008 (η = 0.2)

Thus, for our typical parameters and an average value of the square of the fall velocity of
Ω̄2

f ≈ 7.62, the contribution of the last term to ∆tf (and also to tf ) is below 1 millisecond
and can be neglected. Even for a large tilt of η = 0.6, the error in neglecting the second
term of the Taylor-expansion would be below 0.008 seconds. A value of η = 0.6 corresponds
to a tilt angle of ε = 0.6◦ or 6mm on our wheel of 600mm diameter. Higher tilt angles than
ε = 0.6◦ are very unlikely as they would extremely bias the fall position of the ball.
Coming back to the second term (the 1st term in the Taylor-expansion), an integration by
parts yields:

∫ θf

k·2π

[
cos θ − 2a sin θ√
(c1e−2aθ + b2)3

]
dθ =

[
sin θ + 2a cos θ√
(c1e−2aθ + b2)3

]θf

k·2π

+ 3a

∫ θf

k·2π

(sin θ + 2a cos θ)c1e
−2aθ√

(c1e−2aθ + b2)5
dθ

The absolute value of the second term on the right-hand side of the equal sign is bounded
by:

∣∣∣∣∣3a

∫ θf

k·2π

(sin θ + 2a cos θ)c1e
−2aθ√

(c1e−2aθ + b2)5
dθ

∣∣∣∣∣ ≤ 3a

∫ θf

k·2π

1 + 2a√
(c1e−2aθ + b2)3

dθ ≤ 0.44√
73
≈ 0.024

So, dropping this term will lead to an error of η
2 · 0.024 = 0.0024 seconds for η = 0.2 (or

0.0072 seconds for η = 0.6) in determining ∆tf .
Lastly, we have:

[
sin θ + 2a cos θ√
(c1e−2aθ + b2)3

]θf

k·2π

=
sin θf + 2a cos θf√

(c1e−2aθf + b2)3
− 2a√

(c1e−2a·k·2π + b2)3
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We can again drop the second term on the right-hand side which is <0.0024 for our typical
parameter values, retaining only the first term as a first-order correction for ∆tf .
Summing up we have as an approximation to (32):

tf =
1
ab

[
c0 − arsinh(sinh c0 · eaθf )

]
− η

2
sin θf + 2a cos θf√

(c1e−2aθf + b2)3
(36)

which can easily be computed in real-time and where the worst-case error is ≈0.0056 seconds
for the case η = 0.2 and ≈0.018 seconds for the case η = 0.6.
If we assume that the rotor velocity is approximately 0.33 r.p.s, an error of 0.0056(0.018)
seconds in calculating tf would translate to an error of 0.07(0.22) pockets on the rotor.

4.5 The Roulette Equations

We conclude this section by determining adjustments to the formulas for calculating the
fall-position and the fall-time due to any change in the local coordinate system.
Up to now it was tacitly assumed that the point θ = 0 was the low point of the tilted wheel
and at the same time was our ”observation” point, i.e. the origin of our coordinate system.
In practice this choice of origin is usually impossible as the measurement reference is usually
one of the (vertical) metal deflectors on the stator which rarely coincides with the low point
of the wheel. Also, some of the deflectors are inconvenient to be used as reference points
as the corresponding positions on the wheel could be blocked by e.g. the croupier or other
persons.
Let us suppose that our vantage point is located at some angle ϕ from the low point of the
wheel. A calculation shows that if we choose ϕ as the new origin of our coordinate system,
our formulas for determining θf and tf become:

c1e
−2aθf + η

[
(1 +

1
2
(4a2 + 1)) cos(θf + ϕ)− 2a sin(θf + ϕ)

]
+ b2 − 5

7
g

R
tan δ cos ε = 0 (37)

tf =
∫ θf

0

dθ√
c1e−2aθ + b2 + η(cos(θ + ϕ)− 2a sin(θ + ϕ))

(38)

or (approximately) :

tf =
1
ab

[
c0 − arsinh(sinh c0 · eaθf )

]
− η

2
sin(θf + ϕ) + 2a cos(θf + ϕ)√

(c1e−2aθf + b2)3
(39)

The above formulas are the roulette equations for the fall-position and fall-time of the
ball which are valid on wheels with or without tilt.

5 Parameter Estimation

In order to be able to make predictions from measurements of the initial angular velocity, the
parameters a, b, η, ϕ and Ω̄2

f = 5
7

g
R tan δ cos ε which are characteristic for a specific ball and

wheel need to be identified from observed data.
If we make timing measurements tk for complete revolutions of the ball (i.e. when the ball
repeatedly passes a fixed reference point on the stator such as a vertical deflector), the ball
deceleration parameters a, b can be identified by using equation (35) and minimizing
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S(a, b, c0) =
n∑

k=0

{
tk −

1
ab

[
c0 − arsinh(sinh c0 · ea·k·2π)

]}2

(40)

In the above equation the parameters a, b and c0 appear nonlinearly. Here, the method of
Levenberg-Marquardt for nonlinear least-squares estimation as described in (cf [3]) is appro-
priate. If we clock the ball during the last 4 to 6 revolutions before it comes off the track
we obtain 5 to 7 measurement points to determine the parameters. Repeating this process
for several spins and taking arithmetic means of the identified parameters of each spin will
reduce the influence of measurement errors in clocking the ball.
After the shape of the deceleration curve for the ball has been identified in the above way
the parameter estimates can then be further refined by freezing the value for β = ab2 and
minimizing 3

S(a) =
n∑

k=0

{
tk −

1√
a
√

β

[
c0 − arsinh(sinh c0 · ea·k·2π)

]}2

(41)

with

c0 = −arcoth(x)

x =
ea·2π − cosh(ab · T0)

sinh(ab · T0)
T0 = t1 − t0

The direct mimimization of S(a) can be achieved through a Golden-Section-Search as de-
scribed in (cf [3]) or by the method of trisection (cf [6]).
Once a, b are known, the remaining parameters η, ϕ and Ω̄2

f = 5
7

g
R tan δ cos ε can be deter-

mined by minimizing

S(η, ϕ, Ω̄2
f ) =

n∑
k=1

∣∣∣∣c1e
−2aθfk + η

[
(1 +

1
2
(4a2 + 1)) cos(θfk

+ ϕ)− 2a sin(θfk
+ ϕ)

]
+ b2 − Ω̄2

f

∣∣∣∣
(42)

with

c1 = b2(x2 − 1)

x =
ea·2π − cosh(ab · T0)

sinh(ab · T0)

Here we have only one nonlinear parameter ϕ. For successive spins, measured values for T0

and θf are stored in a table and then (42) is directly minimized by trisection of the interval
[0, 2π] which must contain the value of ϕ. For any fixed ϕ, equation (42) becomes

S(η, Ω̄2
f ) =

n∑
k=1

∣∣yk + η xk + (b2 − Ω̄2
f )

∣∣ (43)

which can be solved by the method of robust linear estimation as described in (cf [3]).
3this refinement is especially well suited to the way predictions are made during actual play
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Minimizing the absolute value of S(η, ϕ, Ω̄2
f ) (instead of using least-squares minimization) is

less sensitive to small errors in the measurement of T0 (which can lead to large errors in θf

due to the existance of the forbidden zone on tilted wheels)4.
Measuring θf is done in the following way: mentally divide the wheel into n sectors; from a
fixed reference point count the number of complete revolutions j (after the the initial clock
pulse) before the ball leaves the rim of the wheel; determine the number i of sectors that the
ball travels in the final round; calculate θf = (j + i

n) · 2π.
With training it is possible to identify by eyesight 5 the fall position of the ball to within a
standard error of plus/minus two to three pockets and to reduce the timing error in determin-
ing T0 to approximately one hundredth of a second. The total standard error in predicting
the fall position of the ball is then below four pockets.

6 Ball Rolling in a Circular Cone

When the ball leaves the rim of the roulette wheel it spirals down towards the rotor until it
(usually) hits one of the metal deflectors before hitting the rotor and finally coming to rest in
one of the pockets. This section deals with that part of the motion of the ball from the exit
location up to the collision with a metal deflector. In low-profile roulette wheels, as they are
common in the casinos today, the spiral arc is quite long and its length differs according to
the exit location of the ball, the level of tilt and the geometric arrangement of the deflectors.
From rigid body physics it is known that the kinetic energy of a sphere rolling on a smooth
surface without slipping is given by

T =
m

2
v2 +

1
2
Iω2

where m is the mass of the sphere, ~v is the velocity of its center of gravity, ~ω is the spin
velocity and I is the inertia. For a homogeneous sphere of radius r the inertia is defined by

I =
2
5
mr2

From the no slipping condition (|rω| = |v|) we obtain in cartesian coordinates:

T =
7
5

m

2
v2 =

7
5

m

2
(ẋ2 + ẏ2 + ż2)

Figure 3 shows a cross-section of the tilted cone where, in the local coordinte system, x
points to the left, y points out of the page and z points upwards. If we define the tilt of the
wheel along the y-axis to be zero then the gravitational force field can be expressed in local
coordinates as

F = (mg sin ε, 0,−mg cos ε)

So the potential energy V = V (x, y, z) is given by:

V = mg(sin ε · x− cos ε · z)

4The function S has actually two minima in the interval [0, 2π] with identical values. We always choose
the physically meaninful solution with η > 0.

5You ’see’ the ball coming and can compensate your timing reaction accordingly and in your head you can
’interpolate backwards’ to identify the fall-sector.
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Figure 3: cross-section of tilted roulette wheel

In cylindrical coordinates (R, θ, z) defined by:

x = R cos(θ + ϕ)
y = R sin(θ + ϕ)
z = z

the z-coordinate is related to the R-coordinate through the angle δ of the cone:

z = R tan δ

so that we can write for the kinetic and potential energy:

T =
7
5

m

2
(Ṙ2/ cos2 δ + R2θ̇2)

V = mgR(sin ε cos(θ + ϕ)− cos ε tan δ)

The equations of motion are obtained by defining

L = T − V

and applying the formalism of Lagrange for L = L(R, Ṙ, θ, θ̇):

d

dt

∂L

∂Ṙ
− ∂L

∂R
= 0

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0
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The variational principle of Lagrange contains all of Newtonian mechanics which in this
case are exemplified by the principles of conservation of energy and conservation of angular
momentum:

R̈/ cos δ = Rθ̇2 cos δ − 5
7
g [sin δ cos ε− cos δ sin ε cos(θ + ϕ)]

Rθ̈ = −2Ṙθ̇ − 5
7
g sin ε sin(θ + ϕ)

The above equations define the motion in a conservative system without dissipative forces.
If we include air resistance and surface friction we obtain:

R̈ = −α̃ |v| Ṙ− β̃s
|v|
R

Ṙ− β̃c
g

|v|
Ṙ +

[
Rθ̇2 − 5

7
g(tan δ cos ε− sin ε cos(θ + ϕ))

]
cos2 δ

θ̈ = −α̃ |v| θ̇ − β̃s
|v|
R

θ̇ − β̃c
g

|v|
θ̇ − 2Ṙθ̇/R− 5

7
g

R
sin ε sin(θ + ϕ) (44)

with |v| =
√

Ṙ2/ cos2 δ + R2θ̇2.

For R = R0 = const, implying R̈ = Ṙ = 0, the above equations reduce respectively to the
exit condition (27) and the equations of motion on the rim (1), as they should6.
The conditions of friction and air resistance when the ball is rolling inside the bowl are
different from those when the ball is on the rim. However, if we make some assumptions we
can relate the identified parameters α, β to the coefficients of wind friction and rolling friction
in equations (44). Setting ’ex cathedra’ µ0 = 0.001 we obtain µ1 from:

µ1 = (
7
5

R0

g
β + 0.001 cos δ)/ sin δ

We then set:

α̃ = [α− (µ1 cos δ + 0.001 sin δ)] /R0

β̃s = ff · µ1 sin δ

β̃c = ff ·
5
7
µ1 cos δ

Here, R0 designates the ball track radius and ff is a fudge factor in the range [0, 1]. The fudge
factor provides a ”handle” to fine-tune the predictions in the final phase before the ball hits
an obstacle and is scattered into the rotor. From equations (44) it follows that the slowing-
down in the R-direction is mainly due to the pull of gravity when the ball loses angular
velocity Rθ̇ (decreasing the centralfugal force which is acting in the opposite direction) and
that the friction term is the main factor influencing the slowing-down in the θ-direction. Air
resistance only plays a minor role as the ball velocity has already decayed to below 0.5 rps
at this point7.

6except for the fact that the friction term for the ball pressing against the rim is not present
7There is also a short transitional phase (which is not covered by our model) when the ball separates from

the rim and then has to adjust its spin to the new geometric situation. Thus the ball will experience a small
acceleration and depending on the magnitude of the tilt and the stator inclination angle it can even ’reconnect’
to the rim after having separated from it.
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With the ’initial conditions’ at t = 0 (when the ball comes off the rim) defined by

R(0) = R0, Ṙ(0) = 0

θ(0) = θf , θ̇(0) = Ωf

equations (44) are integrated numerically (using e.g. the computer codes STEP/INTRP,
ROOT documented in [5]) until a suitable stopping condition (such as the collision with a
vertical or horizontal deflector) is detected. In this way, a collision time tc and a collision
distance θc is obtained for each exit angle θf and corresponding exit velocity Ωf (according
to the number of sectors defined). Once the values of tc and θc have been identified they
remain constant for a particular wheel/ball configuration and tilt condition.

7 Summary

The ”algorithms” outlined in the sections 1 to 5 constitute a real-time approach for deter-
mining the fall-position and fall-time of a roulette ball spinning on a tilted roulette wheel.
Section 6 describes the path of the ball from where it leaves the rim and spirals down the
bowl of the wheel until it collides with one of the metal deflectors. To the extent that the
models of section 2 and section 6 coincide with reality the described method will accurately
predict the balls motion before colliding with one of the deflectors and can be incorporated
into an overall procedure for physically predicting roulette.
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Algorithmen für elementare Ausgleichsmodelle,
R. Oldenbourg Verlag München Wien, [1973].



18 Roulette Physics

APPENDIX

Rotor Dynamics

To accurately predict the outcome of a game of roulette we need to know the position of the
rotating wheel head (usually the green zero on the rotor) at every instant in time during play.
Newtons second law for a pure rotational motion can be stated as:

Iω̇ = τ

where I is the inertia of the rotor, ω its angular velocity and τ is the externally applied
torque. If we approximate the rotor shape by the shape of a solid disc we can write for the
inertia:

I =
M

2
R2

where M and R is the mass and the radius of the rotor, respectively.
The rotor rotates on a metal shaft and is usually supported by two ball bearings. In this
configuration, the friction torque τ is given by:

τ = −µMg(r1 + r2)

where µ = 0.001 is the coefficient of rolling friction and r1, r2 are the race track radii of the
two ball bearings. The coefficient of rolling friction for ball bearings is a constant at low
rotational frequencies (e.g. 0.33rps). This leads to the following equation of motion8:

M

2
R2ω̇ = −µMg(r1 + r2)

or, in terms of frequency ν = ω/2π:

ν̇ = −k,

[
k = µ · g

π
· r1 + r2

R2

]
We then have for the rotor frequency and rotor position:

ν(t) = ν0 − k · t

x(t) = ν0 · t−
k

2
· t2

with ν(0) = ν0 and x(0) = 0.
When the time T0 for one revolution is known, ν0 is determined by:

ν0 =
1 + k

2T 2
0

T0

8we can neglect air resistance because of the large mass, the low velocity and the streamlined aerodynamic
shape of the rotor
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Identification of the rotor deceleration parameter k is done by measuring the revolution times
ti when the wheel head consecutively passes a fixed reference point on the stator and then
minimizing:

S(k, ν0) =
n∑

i=1

{
i−

[
ν0 · ti −

k

2
· t2i

]}2

or (by straight-line fit):

S(k, ν0) =
n∑

i=1

pi

{
i

ti
−

[
ν0 −

k

2
· ti

]}2

with weights pi = t2i .
On our 60cm (professional) roulette wheel the rotor deceleration constant k was found to be
approximately 0.006, so that the rotor delerates from ν0=0.33rps to ν1=0.2rps in 20 seconds.
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